Installation Guide (Linux)
This guide details how to deploy and run MipMapEngine SDK on Linux systems.
Docker Deployment
Linux systems only provide Docker deployment method
System Requirements
- Operating System: Ubuntu (WSL environment not supported)
- Docker Version: 19.03 or higher (with GPU support)
- GPU: NVIDIA graphics card with CUDA support, Compute Capability 5.0 or higher (Gaussian Splatting reconstruction requires 7.0 or higher)
- Memory: 32GB or more recommended
- Storage: At least 500GB available space
1. Environment Preparation
1.1 Docker Environment Configuration [Skip this step if Docker is already installed]
Ubuntu System Installation Steps
# Update package manager
sudo apt update
# Install Docker
sudo apt install -y docker.io
# Start Docker service
sudo systemctl start docker
sudo systemctl enable docker
# Install NVIDIA Container Toolkit (Ubuntu, Debian)
distribution=$(. /etc/os-release;echo $ID$VERSION_ID)
curl -fsSL https://nvidia.github.io/libnvidia-container/gpgkey | sudo gpg --dearmor -o /usr/share/keyrings/nvidia-container-toolkit-keyring.gpg
curl -s -L https://nvidia.github.io/libnvidia-container/$distribution/libnvidia-container.list | \
sed 's#deb https://#deb [signed-by=/usr/share/keyrings/nvidia-container-toolkit-keyring.gpg] https://#g' | \
sudo tee /etc/apt/sources.list.d/nvidia-container-toolkit.list
sudo apt-get update
sudo apt-get install -y nvidia-container-toolkit
# Configure Docker to use NVIDIA runtime
sudo nvidia-ctk runtime configure --runtime=docker
sudo systemctl restart docker
1.2 Verify GPU Support
# Verify Docker GPU support
[Mainland China]
docker run --gpus all registry.mipmap3d.com/docker/nvidia/cuda:12.8.0-base-ubuntu22.04 nvidia-smi
[Others]
docker run --gpus all nvidia/cuda:12.8.0-base-ubuntu22.04 nvidia-smi
2. License Management
Note: License operations are all run on the host machine
2.1 Install License Tools
# Install SenseShield license client
Download Virbox User Tools (Linux version) (.deb 64-bit) from https://lm.virbox.com/tools.html
sudo dpkg -i senseshield-lcc-2.7.2.68616-amd64.deb
2.2 Activate License
# Activate license using activation code (replace JJKB-NBFS-KTM6-206T with your actual activation code)
ssclt --online_bind_license_key --license_key JJKB-NBFS-KTM6-206T
2.3 Unbind License (when machine is no longer used)
# Unbind license
ssclt --online_unbind_license_key --license_key JJKB-NBFS-KTM6-206T
4. Run Reconstruction Container
4.1 Download Image
docker pull registry.mipmap3d.com/docker/mipmap/runtime:v4.1-ubuntu22.04
4.2 Start Container from Image
# Start Docker container
docker run -it --rm \
-v /tmp:/tmp \ # Mount host directory /tmp to container [required for license access, must execute and mount as per this command]
-v /mnt:/mnt \ # Mount host directory to container [example, adjust according to actual situation]
--cpus 8 \ # Limit container to use 8 CPUs
--gpus all \ # Use all GPUs (requires NVIDIA Container Toolkit)
--name mipmap \ # Container name is mipmap
registry.mipmap3d.com/docker/mipmap/runtime:v4.1-ubuntu22.04 \
/bin/bash # Start bash after entering container
Important Notes:
/mntdirectory mapping: mnt is an example, the caller can flexibly mount whichever directory they want/tmpdirectory mapping: required for license access, must be mounted--cpus 8: Limit container to use 8 CPU cores--gpus all: Enable all GPU support
4.2 Run Reconstruction Program
# Run reconstruction engine in container
./mipmap_engine/reconstruct_full_engine --task_json /mnt/task.json --reconstruct_type 0
Parameter Description:
--task_json: Task configuration file path--reconstruct_type: Reconstruction type (0=default type)
5. Troubleshooting
5.1 Common Issues
Issue 1: Docker cannot start GPU support
# Check NVIDIA driver
nvidia-smi
# Check Docker GPU support
[Mainland China]
docker run --gpus all registry.mipmap3d.com/docker/nvidia/cuda:12.8.0-base-ubuntu22.04 nvidia-smi
[Others]
docker run --gpus all nvidia/cuda:12.8.0-base-ubuntu22.04 nvidia-smi
6. File Structure Description
mipmap_engine/
├── data/ # gdal_folder directory
├── reconstruct_full_engine # Main processing program
Next Steps
- 📚 Read Quick Start to quickly start your first reconstruction task
- 📚 Read 2D/3D Reconstruction API Manual to start learning how to use the API interfaces